BQ24010最大工作电流计算是多少

 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
题目 移动电源的设计与研究
下载积分:1000
内容提示:题目 移动电源的设计与研究
文档格式:DOCX|
浏览次数:0|
上传日期: 04:56:27|
文档星级:
该用户还上传了这些文档
题目 移动电源的设计与研究
官方公共微信BQ24012 (ETC [bq24010 / bq24012型/ bq24013单片锂离子和锂聚合物电池充电管理芯片]) PDF技术资料下载
BQ24012 供应信息 IC Datasheet 数据表 (1/25 页)
按型号查询:
bq24010 / bq24012型/ bq24013单片锂离子和锂聚合物电池充电管理芯片
[bq24010/bq24012/bq24013单片锂离子和锂聚合物电池充电管理 ICs]
&&BQ24012PDF文件:
鼠标右键选目标另存为
不需安装PDF阅读软件
需安装PDF阅读软件
描述:&&bq24010 / bq24012型/ bq24013单片锂离子和锂聚合物电池充电管理芯片[bq24010/bq24012/bq24013单片锂离子和锂聚合物电池充电管理 ICs]文件大小:&&460 KPDF页数:
&&25 页联系供应商:&& 品牌Logo:
&&&&未知厂家 [ ETC ]
中文翻译版 (新)
ZèchnoloflV研究&放大器;AVlJlicationbq24010 / bq24012型/ bq24013单片锤离子二十八,电容式触摸按键ICs山东临沂师范学院工程学院刘永良山东大学电子工程系列摘要关键词李锋bq2401012/3 是德州仪器公司为?½?携式产品应用而定制的单片 Li+或捏聚合物 (Li-Pol )电池线锂离子电池;充电管理ICs;bq降至内部门限电平以下时, ICs?½自动重新充电。C串联稳压器ICso丈中介绍了 bq 的内部结构、功?½特点及其应用。1. 概述美?½德州仪器T1)公司推出的?½?Vcc撤除时, ICs则自动进入睡眠模式。bq240 1Oq240 12/bq240 13 bqTINYTM系列ICs' 是/b为在PDAs和MP3 播放机、数码相机、因特?½?设??2. 内部结构及引脚功?½bq240 1O / 2/3均采用尺寸为3mmX3rllin的10引脚MLP封装。三种ICs除 7和8 两个引脚外, 1-6和UBS充电器等空间被限制的便携式产品应用中,而专门设计和制?½?的高度集成度理离子 (Li+) 和理聚合物CLI -POD电池线性充电管理器件。bq2401012 / 3可以利用经稳压的或未经调整的3-16.5V 的电流电压工?½?,输出调节精度为土 0.5%的 4.20V 的充电电压,输入与输出之间的压差仅约引脚和 9/1 0 引脚名称完全相同,引脚排列如图 1 所刁亏。在bq2401012 / 3芯片上,集成了powerF可通路晶?½?管和电流传感器、精密电流和电压调整器、反向阻塞保护和热关闭电路、充电控制、定时器和充0.65VoICs的输出充电电流可达1A中,充电时间为20650 秒。 bq 的其它功?½包括电池温度检测、电池插入和电池移开检测、电池反向泄漏与短路保护、充电状态指示和充电终止等。?½?电池电压表 1引脚名称引脚号电状态显示电路等,其结构组成方框图如图 2 所示。表 1 列出了 bq240 1O/2/3 的引脚功?½。引脚功?½bq2401023456bq2401223456INVCCSTAT1STAT2VSSISETbq240131234561/10功?½.11充电输入电压,该脚必须连接的Vcc脚正电源电压输入端充电状态输出 1 C 开路漏极)OOOO11充电状态输出 2 (开路漏极)接地端充电电流设定端电源?½状态输出PGTSBATOUT7891079108温度感测输入电池电压感测输入充电电流输出充电赋?½输入(有源?½?电平)定时器和终止?½??½输入(有源?½?电平)91078O11r,JFLPCETIE2003年第7期\u003c牛咱咆: ? t4t&圈TI工程师教你如何正确选择电源IC
来源:电源网
作者:电源网子乐
正确选择电源的集成电路(IC)表面上看似易如反掌。然而,随着需要多电源电压轨的消费类电子产品的推出,这项工作变得愈发复杂。当选择实际工作中所需的IC时,必须考虑成本、解决方案的外形尺寸、电源、占空比以及所需的输出功率等诸多因素。另外,必须根据重要性和相应选择的电源,对这些因素进行排序。在本文中,我们将确定图1所示电源的最佳解决方案。
示例应用中采用的是便携式电源,同时要求最大程度地降低功耗以及减小封装尺寸、并由一块单体锂离子电池供电(12V供电电源对其进行不间断充电)。我们想最大限度的降低成本,但是,这种成本的降低只能以牺牲空间的方式为代价,而空间是最重要的要求条件。其次,就是最大限度的提高效率来延长电池的使用寿命。
选择最佳的拓扑结构
首先,我们要检查各电源轨的功率要求,以确定应采用何种DC/DC转换器(如感应式转换开关、线性调节器或充电泵)。
通常情况下,感应式转换开关是获取最高效率的最佳选择。而感应式转换开关电路需要一个转换组件、一个整流器、一个电感器以及若干输入和输出电容器。在很多应用中,可通过选用IC转换组件和整流器均可实现器件的高度集成以此来缩小解决方案的尺寸。而且,上述电路的效率通常介于80%至96%之间,具体数值要视负载情况而定。由于电感器的尺寸所致,因此开关转换器通常需要更大的空间,而且其价格一般也比较昂贵。另外,由于转换的存在,开关转换器也会从电感器和输出端的噪声中产生电磁干扰(EMI)辐射。
低压降线性调节器(LDO)通过降低旁路组件两端的输入电压来降低直流电压。这种拓扑结构的优点在于只需配置三种部件(旁路组件、输入/输出电容器)。 通常来说,LDO比较便宜,而且产生的噪声比感应式转换开关低得多。由于该器件的输入电流和负载电流相同,因此采用该解决方案的效率等同于输出/输入电压的比值。然而,该方案的不足之处就是当输入/输出电压的比值较大时,则其效率较低。而且,所有的功率都被旁路组件消耗掉了,这也就是说,对于输入/输出差额悬殊的大电流应用而言,LDO并非是上佳之选。因为在大功率的应用中,需要配置散热装置,所以这将增大解决方案的尺寸。
充电泵通过采用“快速”电容器(作为存储组件)来提高/降低直流电压或改变其极性,同时采用内部开关来连接电容器,使其能够进行所需的DC/DC转换。一般而言,充电泵要比感应式转换开关的成本低,而且不会产生电磁干扰。但是,充电泵的输出纹波通常比感应式转换开关大,充电泵在输出功率方面也受到限制。同时,其瞬态响应受到快速电容器充电速率的限制。另外,在输入电压和输出电压相当的应用中,充电泵的效率通常相当低。于是,为了进一步减小解决方案的尺寸,有许多多输出IC可供选择。这些IC通常包括集成的MOS场效应晶体管(MOSFET),同时至少要求配置有外部组件。而且,单就这些IC而言,其成本或许更为昂贵。但是,通过减少生产过程中必须安装到位的外部组件数量所获得的收益,往往会抵消前期付出的高昂成本。
采用何种拓扑结构呢?
在如图1所示的实际应用中,由于空间的限制,所以LDO将成为我们的首选。然而,由于功耗和效率的限制,实际情况并非总是如此。就拿5V、2A的电源轨来说吧,显而易见,需要选用一个开关转换器。在这种情况下,一个LDO的功耗为14W,功耗显然过高。然而,对这种电源轨而言,感应式降压转换器将是最佳选择。
接下来,我们将对电池充电器进行分析。该电池通过5V的电源轨完成充电。我们采用的是充电电压为4.2V的单体锂离子电池。但是,由于实际应用中空间的局限性,因此,线性充电器将是一个不错的选择。因为只有当12V电源适配器正常工作时,电池充电器才能起作用,因此,其对充电效率的考虑并不多。然而,当所选择的电池峰值充电电流深度放电后,电压降至3V时,必须引起足够的重视,并限制电池充电器的散热。
·对于1.5V 的电源轨来说,选用开关降压转换器和LDO都行得通。但是,如果选用后者,效率将维持在25%左右的范围,而且需要100mA的输入电流。如果替换为降压转换器,效率将超过90%,而且需要的输入电流仅为30mA。另外,有许多外形非常小巧的开关转换器解决方案,而这些解决方案能够提供所需的输出功率。因此,LDO电路的大小是不可估量的。为了最大程度的延长电池的使用寿命,降压转换器当属理想之选。
·对于2.5V的电源轨而言,上述两种拓扑结构都可以发挥作用。由于需要的电流小、输入/输出差值较低,所以LDO堪称最小封装器件的上佳选择。
·对于1.25V的电源轨而言,开关转换器为最佳之选。由于所要求的负载高(300mA)、输入/输出差值大,所以LDO的功耗将非常大,而且效率极低。
·对于1.65V的电源轨而言,上述两种拓扑结构都行之有效。通过采用与1.5V电源轨相同的逻辑分析方法,我们得出了这样一个结论—选用开关转换器。但是,之后探讨的其他因素表明,应选用LDO。
·对于图1底部的3.3V电源轨而言,由于要求输出电流大,因此,选用开关转换器当属上佳之选。
为实际工作需要选择最佳的IC
考虑到组件尺寸和成本方面的局限性,所选用IC的集成度应尽可能高。为此,所选用的全部IC都集成了MOSFET,这样,不仅降低了解决方案的尺寸而且还降低了生产成本。此外,除了减少材料清单以外,由于组件数量的减少,同时也降低了安装各电路板的成本,从而进一步降低了整个解决方案的成本。另外,还有多输出IC可供选择,这种IC能更进一步的减小我们解决方案的尺寸。
如果再次从5V的电源轨开始分析电路的有关情况,则对于5V电源轨而言,最佳的解决方案为TPS5431。因为其宽输入范围(5.5V至23V),所以能够满足12V±10%的输入电压变化。而且,当将输出电压调低至1.2V时,TPS5431还能输出高达3A的电流。由于开关MOSFET和补偿组件集成在一起,因此95%的效率能够满足电池供电的要求。该器件采用SO-8封装,从而实现了非常小型的解决方案尺寸。
接下来,我们将分析电池充电器,其有数种解决方案可供选择。例如,小尺寸电池充电器IC bq24010就是一种不错的选择,其采用3×3mm QFN封装。该解决方案的尺寸相当小,只需三个外部组件。但是,对于我们的应用而言,还有一款更佳的解决方案—TPS65010,该解决方案是一款针对锂离子供电系统的电源和电池管理IC。由于TPS65010集成了两个开关转换器(VMAIN和VCORE)、两个LDO(LDO1和 LDO2)以及一个单体锂离子电池充电器,所以其非常适合我们的应用要求。除了上述电源轨之外,当12V电源适配器接通时,此时,IC无需开关电路。在我们的应用示例中,VMAIN为3.3V的电源轨供电、VCORE为1.25V的电源轨供电、LDO1为1.65V的电源轨供电、而LDO2为2.5V的电源轨供电。此外,使用TPS65010可以大幅缩小解决方案的尺寸并降低外部组件的数量。
最后一条1.5V电源轨可由降压转换器(如TPS62201)提供电源。TPS62201采用6引线SOT-23封装,而且它只需三个外部组件(一个输入和输出电容器、一个电感器以及两个反馈电阻器)。这就实现了解决方案尺寸的小型化。但是,为了提高效率,这种器件的输入端应连接至 TPS65010 器件3.3V的MAIN输出端。
最终的解决方案
根据以前分析,我们可以找到最终的解决方案,如图2所示。
如果不具备 I2C 接口,我们将何以应对?
在应用过程中如果不具备I2C接口,那么我们就无法使用TPS65010。在这种情况下,TPS75003将被派上用场。TPS75003包含两个3A DC/DC降压开关转换器以及一个300mA LDO。这种器件的输出大小可根据实际需要进行调节,其集成了三条电流最大的电源轨。1.25V和3.3V电源轨将由开关转换器供电,而由于较低的电流要求,因此1.65V的电源轨将由LDO供电。剩下的2.5V电源轨由一条小型的LDO电路轻松供电。TPS71525采用SC-70封装,其外形尺寸极为小巧,非常适用于陶瓷输出电容器。
一款尺寸较大而不太昂贵的解决方案就是采用TPS7V的电源轨供电。然而,TPS76925控制电路需要在输出端配置一只最小值的等效串联电阻,以实现电路运行的稳定性,因此,这将可能与电路尺寸方面的限制发生冲突。
系统效率差异的计算
对于本次探讨分析,我们事先假定所有的电压轨自始至终都处于工作状态,而实际工作中情况却很少如此。通常在采用感应式转换开关的情况下,为了最大程度的减小解决方案的尺寸,LDO或许是一个不错的选择。而且,通过计算各拓扑结构之间的效率差异,就能够确定该选用何种解决方案。
通过输出端启用的时间百分比(占空比),我们就能够确定每条电源轨对解决方案整体效率的影响。首先,通过累加各电源轨的有效功率,可求出输出总有效功率:
式中Pi表示一条输出电源轨的输出功率,Di表示同一电源轨的占空比。接下来,我们计算每一电源轨上的功率损失:
然后,累加各条电源轨的功率损失,以求取总功率损失:
式中ηi表示各输出电源轨的效率。然后,我们计算出每条电源轨对整体系统效率的影响:
通过累加各电源轨系统的效率或采用下列公式,即可求出整体系统效率:
例如,如果我们前面确定的3.3V、420mA电源轨应由开关转换器供电,且其启用时间仅占运行时间的10%,那么采用LDO替代该转换器,整体效率的下降幅度将不会超过0.75%。具体情况请参阅表1。
如果3.3V输出端一直处于开启状态,那么采用LDO替代该感应式转换器将使整体效率下降近4%。显然,这是两种极端情况,但是它们表明了占空比是如何影响整体效率的。当输出占空比增大时,我们必须核实解决方案尺寸与效率之间的计算比值,以确定最佳的解决方案。
在许多不同的、且适用于DC/DC转换的选项中选择一款满足自身需要的器件,将是一件棘手的工作。必须考虑到诸如可用空间、有效输入功率、输出功率、占空比以及成本等要求,以便于选用最佳的解决方案。首先,我们可以重要程度为标准,将上述条件进行排序,然后根据这些条件,为各种不同输出情况选择最佳的拓扑结构。最后,我们可以为各种不同输出选择最经济划算的解决方案。只要遵循这些简单易行的方法,就会使电源的设计工作毫无困难可言。
Buck电路被大量应用在电路设计中,其中最大输出电流..
UC3842是目前应用面积最广的电源控制芯片,其被大量..
由于逆变电源在电路中肩负着直流和交流之间的转换,..
对于buck电路的成本,很多人认为与三级电路相比其优..
说起电源管理芯片,就不得不提到UCUC3842。这款经典..
关于电源网
我们的服务
服务时间:周一至周五9:00-18:00
电源网版权
增值电信业务经营许可证:津B2-
网博互动旗下网站: 上传我的文档
 下载
 收藏
所有文档均来自于网络,所搜集文档几乎涵盖了所有行业,均严格按照道客巴巴->文档分类->所有文档->分类。对每篇文档详细释义做出了合理推敲,并对其精确划分了类别。例:解除劳动合同证明书 ->(标题)->所有文档->(法律文献)->(分类)->合同范本。旨在让大家把搜索到的文档对照标题,参照分类。一看便一目了然成竹在胸,放心下载,安心使用。笔者主要搜集了一些常用文档,如论文,工作总结,合同协议,规章制度,报告,方案,课件,试题,试卷,答案,职业资格考试,策划营销....等等一些教育学习,办公写作,商业经营,实用性极强的文档,您若觉得对您日常学习,商业经营,社交沟通,办公写作有所帮助的话就关注我吧。
 下载此文档
正在努力加载中...
题目 移动电源的设计与研究
下载积分:1000
内容提示:题目 移动电源的设计与研究
文档格式:DOCX|
浏览次数:2|
上传日期: 00:06:50|
文档星级:
该用户还上传了这些文档
题目 移动电源的设计与研究
官方公共微信}

我要回帖

更多关于 工作电流计算 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信