初二物理科学小议论文怎么写写 如题,初二物理科学小议论文怎么写写 YJB

初二物理论文怎么写pbymlf5778684专题
佛缘网站的运行需要大量的资金及人力,佛缘商城法宝流通的收益将用于佛缘网站的建设。感恩您的支持!
非经营性互联网文化单位备案:
地址:福建省厦门市湖里区金湖一里6号409室 邮编:361010 联系人:陈晓毅
电话:(值班时间:9:00-17:30) QQ群:8899063 QQ:初二物理科学小论文怎么写
初二物理科学小论文怎么写
  如题,初二物理科学小论文怎么写(告诉我格式就行了,最好加篇范文) &
【YJBYS小编为您推荐更多相关内容】
  科学小论文实际上是同学们在课内外学科学活动中进行科学观察、实验或考察后一种成果的书面总结。   可以仿照课本中的探究实验的模式,相当于实验报告,或者科学探究报告。   当然,也可以用正规的论文模式。它的表现形式是多种多样的:可以是对某一事物进行细致观察和深入思考后得出结论;可以是动手实验后分析得出的结论;也可以是对某地进行考察后的总结;还可以靠逻辑推理得出结论……
  摘要:物理是一门历史悠久的自然学科。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域;物理学存在于物理学家的身边;物理学也存在于同学们身边;在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。   科学思维方式物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点:   1.汽车驾驶室外面的观后镜是一个凸镜   利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。   2.汽车头灯里的反射镜是一个凹镜   它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。   3.汽车头灯总要装有横竖条纹的玻璃灯罩   汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。   4.轿车上装有茶色玻璃后,行人很难看清车中人的面孔   茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。   5.除大型客车外,绝大多数汽车的前窗都是倾斜的   当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。   再如下面一个例子:   五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。   一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。   明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。   另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的“启动器”里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。   这样的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。   谈到物理学,有些同学觉得很难;谈到物理探究,有同学觉得深不可测;谈到物理学家,有同学更是感到他们都不是凡人。诚然,成为物理学家的人的确屈指可数,但只要勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,你就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。物理不但是我们的一门学科,更重要的,它还是一门科学。   物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利   阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。   物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了 “软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上1.5V的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量 “2.4V、0.5A”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上2.4V的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。   身边的事物是取之不尽的,对与现实生活联系很紧密的物理学科来说,更是时时会用到的,用身边的事例去解释和总结物理规律,学生听起来熟悉,接受起来也就容易了。只要时时留意,经常总结,就会不断发现有利于物理教学的事物,丰富我们的课堂,活跃教学气氛,简化概念和规律。新课标告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。”   今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。
  浮力的应用 孔明灯   “孔明灯”,是以蜀汉刘备军中,足智多谋的军师诸葛亮(孔明)命名的,算起来已有一千七百多年的历史了。当年,诸葛孔明被司马懿围困於平阳,无法派兵出城求救。孔明算准风向,制成会飘浮的纸灯笼,系上求救的讯息,其后果然脱险,於是后世就称这种灯笼为孔明灯。另一种说法则是这种灯笼的外形像诸葛孔明戴的帽子,因而得名。   最早的孔明灯的作法是:用很细的竹篾做成灯笼架,四周和顶上都用薄纸糊严,只在底部留个圆口。在灯笼下面挂上松脂,点燃松脂后,灯笼就会升上空中。由于灯笼里有火光,古代战争中,曾经把它作为夜间军事行动的信号,如同现代所用的信号弹一样。   清朝年间,汉民族不满清政府的统治,纷纷起来开展“反清复明”斗争。为成义举,把放“孔明灯”作为统一行动的指挥信号。   过去,汉人们把“孔明灯”作通信联络使用,而后来人们把放“孔明灯”作为一种民间娱乐,现代人放孔明灯多作为祈福之用。男女老少亲手写下祝福的心愿,象徵丰收成功,幸福年年。   孔明灯的结构可分为主体与支架2部份,主体大都以竹篦编成,次用棉纸或纸糊成灯罩,底部的支架则以竹削成的篦组成。孔明灯可大可小,可圆形也可长方形。一般的孔明灯是用竹片架成圆桶形,外面以薄白纸密密包围而开口朝下。欲点灯升空时,在底部的支架中间绑上一块沾有煤油或花生油的粗布或金纸,放飞前将油点燃,灯内的火燃烧一阵后产生热空气,孔明灯便膨胀,放手后,整个灯会冉冉飞升空,如果天气不错,底部的煤油烧完后孔明灯会自动下降。   孔明灯的原理与热气球的原理相同,皆是利用热空气之浮力使球体升空。然而为何热空气会飘浮呢?我们可用阿基米德原理来解释它:当物体与空气同体积,而重量(密度)比空气小时就可飞起,此与水之浮力的道理是相同的。将球内之空气加热,球内之一部份空气会因空气受热膨胀而从球体流出,使内部空气密度比外部空气小,因此充满热空气之球体就会飞起来。   生活中有很多的物理现象,许多简单的现象可以用所学知识去解答。   现象一:飞快的火车有一个安全距离,当我们在公路上步行时,不宜靠中太近,除了害怕离线的车会撞到之外。还有一个意料之外的原因,对此本文将作出解答。   现象二:取两片很薄的纸,将他们贴近,用力的吹,我们并不能将纸吹开,反而出现被“吹拢”的情况。   现象三:,对于相同流量的水而言,口径大的水龙头,水的流速很慢,但是对于口径小的水龙头,可以明显的看到流速加快了。这是什么原因呢?   总结来看,空气和水都是流体,在两者之间有着一定的共同点,都遵循流体的基本性质,在流体的学习中有两个很重要的方程叫:伯努利方程和连续性方程。用它们就可以很简单的解释上面三个现象。首先,伯努里方程的基本表达式为:P+1/2pv+pgh=恒量。P指流体周围的压强大小,p指流体本身的密度,v指流体的速度。在上述但现象中,可把水和空气近似的看作理想流体,且它们作常流动。在以上前两种情况中,都可以将pgh看作是不变的,所以我们很容易的就得到P+1/2pv=恒量。容易得出压强和速度成反相关。下面将对三个现象作出具体的解释。   解释现象一:其中提到一个意外的原因就是很有可能身边的空气将我们“推”向汽车而发生意外。为什么这么说?当车飞快的从我们身边开过的时候,对周围的空气造成了影响:使它们的速度加快,在这样的情况下,根据上面的推倒易知:速度过快造成周围空气的压强减小,在汽车周围形成一个压强差,在车周围的事物就容易被“压”到车下。这是相当危险的,所以步行要尽量的靠边走。   解释现象二:当两片薄纸靠近,我们将它们看成和外面的空气分开,当我们吹气时,使得两纸间少量的空气流速加大,压强减小,外围的空气使得纸片贴在一起。   解释现象三:同流量即体积相同,所以易知SV=S V。这就是理想流体的连续性方程。它表示理想流体作定常流动时,流体的速率与流管截面积的乘积是一个恒量。由此可知,当我们将口径边小时,必然导致流速加快。根据个原理在科技上也有很大的运用,比如切割水枪,对于一样的出水量,这种水枪的口径很微小,使得出水的速度极快,所含动能极大,   在生产上有很大的运用。   最后,要介绍一个很实用的方法:取水。在家中,看到大人用一根管子插到水里,用嘴在管口吸气,水就会自己流出来,我也试过,但没有成功,现在我目标了原因:必须保证吸气的一端低于出水的一端,为什么呢?这是利用了大气压的原理。当吸气后管子里成为真空,水就被外界大气压压倒了出水端。   物理在我们的生活中有很大的作用,我们可以借着生活来学习物理,再利用物理来服务生活。& &物理科学小论文 初二下册的哟物理科学小论文初二下册(500字以上:学物理的心得体会或对某一现象的认识、观察、分析、创想或对某一用具的革新、创造、发明具有一定科学价值)拜托各位拉_百度作业帮
物理科学小论文 初二下册的哟物理科学小论文初二下册(500字以上:学物理的心得体会或对某一现象的认识、观察、分析、创想或对某一用具的革新、创造、发明具有一定科学价值)拜托各位拉
水精灵”之现形记(水精灵是一种想果冻一样的东西,不知道你们那边有没有) 引言: 最近一段时间,一种被称为“水精灵”的玩具,出现在大街小巷尤其是学校周围的玩具摊上.因其色彩艳丽着实吸引了不少同学的眼球,不少人抵挡不住小贩的吹嘘,常买几只带回家.开学初,我们班许多同学也加入了买了水精灵的行列.水精灵是个什么东西,它是用什么做成的,对人体有无害处,怀着这些问题,我展开了对水精灵的调查. 一、 分析水精灵 九月底,我先对学校周围的商家进行采访,想了解这些水精灵是从什么地方批发来的,有无生产家,是否符合国家卫生标准,但学校周围的商家对此避而不答,有些甚至威胁我们.我只好改变策略,进行暗中调查,我先买了一袋,当即用小刀对水精灵进行解剖.立即遭到小贩的制止:“这都是有生命的东西,老动它,会弄死它的.”据其称,这是一种类似于蘑菇一样的人工培育的海底真菌,它质地柔软,无毒、无污染.用手触摸的感觉像果冻.当用小刀从中间切开后,一股透明的液体随之流出.凭感觉我觉得这是明胶之类的物质,明胶是做果冻的主要材料.这些水精灵有红的,黄的,绿的,蓝的,透明的,五颜六色非常漂亮.圆圆的,跟黄豆差不多大小,直径约为0.5厘米,捏起来软软的,富有弹性,很粘手.一股刺鼻的香味,熏得人头发晕. 经过初步的观察,我们觉得这是一种很少见到的儿童玩具.但它为什么有这么多颜色,为什么气味那么刺鼻,它的成份是什么,我又开始了第二步行动:并且开始记录: 第1天:开始膨胀.我把一滴墨水滴入水中,一会儿水就又变成清的了.我很纳闷,难道水精灵是污水清道夫? 第2-3天中,水精灵长出了尾巴.同时开始脱色,尾巴短小,像蝌蚪尾巴. 第4-5天:长翅膀.(还未长出). 第6天:产卵.(就是从一个里面出来另一个)水精灵的蛋蛋特圆,可以捏碎,表面光滑.好像不会动.捏碎后里面像碎玻璃,里外都是透明的.我们怀疑是不是活的,可又会下蛋.还十分有弹性,真怪异. 二、水精灵的成分 水精灵整个生长过程就像是一个细胞分裂过程.后来我上网查才知道水精灵是一种吸水性树脂(化学材料),一般是用淀粉混合丙烯腈或丙烯酸酯制成的.它们是胶丸大小的透明小球,有红的、黄的、蓝的……五颜六色,非常抢眼,用小塑料袋或小玻璃瓶装着,每瓶里面大概有60个小球,售价为0.5元,因为放入水中会有“神奇”的变化,所以它们也有个比较玄的名字———“水精灵”.这些珠子很软、滑、湿,在水里膨胀以后,有的会鼓出一个包,慢慢地分离出来,所以珠子也会越来越多. 三、水精灵对人体的危害. 丙烯腈和丙烯酸酯都有一定的毒性,而且商家在制作中也不可能用昂贵的食用色素,可能会添加一些工业色素,所以建议小学生最好不要玩这种东西,如果皮肤接触了就要赶紧清洗,当然家长也要十分留心,切忌让年龄小的孩子玩耍,以免误食. 四、水精灵带来的伤害 1、对人体造成的伤害.丙烯腈和丙烯酸酯都有一定的毒性,而且商家在制作中也不可能用昂贵的食用色素,可能会添加一些工业色素.所以建议小学生最好不要玩这种东西,如果皮肤接触了就要赶紧清洗,当然家长也要十分留心,切忌让年龄小的孩子玩耍,以免误食. 2、让同学们养成乱用零用钱的坏习惯,有些甚至偷拿家长的钱,盲目地追随潮流. 3、如果把水精灵带到学校,有些同学就会在课桌下玩水精灵,不认真听讲,分散注意力,从而影响我们的学习. 节约用电小窍门 摘要:随着能源的减少,人们逐渐变得重视节能了.在我还上小学时就教育我们节能的观念,只为了我们人类能在地球永远的生活下去.在现实生活中,人们仍不清楚怎样节能,让节能只是一个说的到,却不能全做的到的事情,往往还因缺乏科学的节约常识和“小窍门”,造成不必要的浪费现象.现在我来就介绍家庭的节电. 关键词:1、电饭煲的节能 2、电视机节电小窍门 3、 空调节电小窍门4、冰箱节电小窍门 引言:随着能源的减少,人们逐渐变得重视节能了.在我还上小学时就教育我们节能的观念,只为了我们人类能在地球永远的生活下去.在现实生活中,人们仍不清楚怎样节能,让节能只是一个说的到,却不能全做的到的事情,往往还因缺乏科学的节约常识和“小窍门”,造成不必要的浪费现象.现在我来就介绍家庭的节电. 电饭煲节电小窍门 一、电饭煲的节能 现在市面上的电饭煲分为两种:一种是机械电饭煲,另外一种是电脑电饭煲.使用机械电饭煲时,电饭煲上盖一条毛巾,注意不要遮住出气孔,这样可以减少热量损失.当米汤沸腾后,将按键抬起利用电热盘的余热将米汤蒸干,再摁下按键,焖15分钟即可食用.电饭煲用完后,一定要拔下电源插头,不然电饭煲内温度下降到 70度以下时,会自动通电,这样既费电又会缩短使用寿命.尽量选择功率大的电饭煲,因为煮同量的米饭,700瓦的电饭煲比500瓦的电饭煲要省时间.电脑电饭煲一般功率较大,在800瓦左右,从而节能,但价格稍贵,一般都在500元至800元之间. 二、电视机节电小窍门 电视机节能可以通过如下几条途径:首先控制好对比度和亮度.一般彩色电视机最亮与最暗时的功耗能相差3o瓦至50瓦,建议室内开一盏低瓦数的日光灯,把电视对比度和亮度调到中间为最佳.其次控制音量,音量大,功耗高.第三个省电的办法是观看影碟时,最好在av状态下.因为在av状态下,信号是直接接入的,减少了电视高频头工作,耗电自然就减少了.第四是看完电视后,不能用遥控器关机,要关掉电视机上的电源.因为遥控关机后,电视机仍处在整机待用状态,还在用电.一般情况下,待机10小时,相当于消耗半度电.最后是给电视机加防尘罩.这样可防止电视机吸进灰尘,灰尘多了增加电耗. 三、空调节电小窍门 1、空调使用过程中温度不能调得过低.因为空调所控制的温度调得越低,所耗的电量就越多,故一般把室内温度降低6至7度就行了. 2、制冷时室温定高1度,制热时室温定低2度,均可省电10%以上,而人体几乎觉察不到这微小的差别. 3、设定开机时,设置高冷/高热,以最快达到控制目的;当温度适宜时,改中、低风、减少能耗,降低噪音. 4、“通风”开关不能处于常开状态,否则将增加耗电量. 5、少开门窗可以减少房外热量进入,利于省电. 6、使用空调器的房间,最好使用厚质地的窗帘,以减少凉空气散失. 7、室内、外机连接管不超过推荐长度,可增强制冷效果. 8、安装空调器要尽量选择房间的阴面,避免阳光直射机身.如不具备这种条件,应给空调器加盖遮阳罩. 9、定期清除室外散热片上的灰尘,保持清洁.散热片上的灰尘过多,可大幅度增加耗电量. 四、冰箱节电小窍门 目前市场上出现的a++级节能冰箱比普通的冰箱要省电.家庭用的节能冰箱一般消耗0.5~0.8度电/天,而普通冰箱一般耗电1~1.5度电/天,大约可以省一半电.另外,使用冰箱的过程中,应注意以下问题: 1、冷藏物品不要放得太密,留下空隙利于冷空气循环,这样食物降温的速度比较快,减少压缩机的运转次数,节约电能. 2、在冰箱里放进新鲜果菜时,一定要把它们摊开.如果果菜堆在一起,会造成外冷内热,就会消耗更多的电量. 3、对于那些块头较大的食物,可根据家庭每次食用的份量分开包装,一次只取出一次食用的量,而不必把一大块食物都从冰箱里取出来,用不完再放回去.反复冷冻既浪费电力,又容易对食物产生破坏. 4、解冻的方法有水冲、自然解冻等几种.在食用前几小时,可以先把食物从冷藏室(4度左右)里拿到微冻室(1度左右)里,因为冷冻食品的冷气可以帮助保持温度,减少压缩机的运转,从而达到省电目的. 冰箱的摆放也有讲究,一般应该注意以下两个问题: 1、在摆放冰箱时,一般应在两侧预留5~10厘米、上方10厘米、后侧10厘米的空间,可以帮助冰箱散热. 2、不要与音响、电视、微波炉等电器放在一起,这些电器产生的热量会增加冰箱的耗电量. 节能是很重要的,人都应该用这些小窍门,不应该因嫌麻烦就不去做这些事.这些事对谁都有极大的好处的,仅仅需要举手之劳而已.有关部门也应该加大节能力度,多多宣传.让人类都节约这并不是永远都有的能源!为造福我们的后代而努力吧!
无声的世界将怎样 在我们这个充满着绚丽色彩的世界中,声音起到着重要的作用。没有声音的世界将会怎样。让我们来幻想一下那将会是一个怎样的世界呢?是有趣的?阴冷的?安静的?还是…… 人类是世界的主宰者,首先声音会对人类怎样呢?那就让我们先来谈谈声音对人类的影响吧!如果没有声音,人类会怎样呢?如果没有声音人们说话发不出声音,就像是那些失声的人打着哑语来交谈。人又为什么要耳朵呢?又没有声...
您可能关注的推广&& 查看话题
大连化学物理研究所在Science发表文章
近日,我所分子反应动力学国家重点实验室杨学明院士、张东辉研究员领导的研究团队在分子反应动力学研究工作上又获突破性进展。由该实验室肖春雷、孙志刚、杨学明、张东辉等撰写的论文,“Extremely short-lived reaction resonances in Cl+HD(v=1)→DCl+H due to chemical bond softening(Cl+HD→DCl+H反应中化学键软化所引起的超短寿命反应共振态)”,发表于1月2日出版的《科学》杂志上(Science 347, 60 (2015)),该研究工作极大地提高了科学家们对化学反应共振态的认识。
  化学反应动力学研究的一个根本任务是认识反应过渡态是如何控制化学反应的速率和产物分布,因此直接观察反应过渡态长期以来一直被认为是化学科学研究中的一个“圣杯”。但是由于反应过渡态寿命非常短(飞秒数量级,1飞秒等于10-15秒),实验上直接观测这些短寿命化学反应过渡态是极其困难的。而反应共振态是化学反应体系在过渡态区域形成的具有一定寿命的准束缚态,它提供了一个让实验直接观察化学反应在过渡态附近行为的契机,因而几十年来寻找反应共振态一直是反应动力学研究的一个备受关注的重要课题。此外,化学反应共振态能极大地影响化学反应速率和产物量子态分布,可以帮助我们进一步提高对化学反应中动态过程的认识和理解。在更深的层次上,因为共振态是一个量子力学现象,研究反应共振态还可以帮助我们认识量子力学是如何直接影响化学反应动态过程的,这对于我们从根本上如何理解化学反应过程具有非凡的学术意义。   
  在上世纪70年代,理论动力学家通过在模型势能面上简单量子动力学计算指出了反应共振态存在的可能性。1984年,李远哲等人首次利用交叉分子束实验装置在F+H2反应中观测到了HF(v=3) 的前向散射现象。当时人们普遍认为直接反应中的前向散射就是共振态的充分证据,因此他们认为在该反应中找到了反应共振态存在的直接证据,在当时引起了很大的轰动。 1986年李远哲和Herschbach, Polanyi同获诺贝尔化学奖,而F+H2→HF+H反应则成为一个经典的教科书例子。但是,这一推测一直没有被精确的动力学理论所证实。相反地,90年之后,更为精确的理论研究发现直接反应中的前向散射并非一定是由共振态所引起的,并对F+H2体系的反应共振态推论提出了质疑。2000年,台湾原子与分子科学研究所刘国平等人首次在F+HD→HF+D反应积分截面随反应能变化的曲线上观察到一个有反应共振态所引起的明显台阶,证实了化学反应中确实存在共振态。2006年以来,中国科学院大连化学物理研究所分子反应动力学国家重点实验室杨学明、张东辉领导的研究团队在F+H2/HD(v=0)反应共振态研究中取得了一系列重要成果。他们利用自行研制的具有国际领先水平的高分辨交叉分子束装置,理论上通过高精度势能面的构造和精确量子动力学计算,并通过实验与理论的高度结合,在F+H2→HF+H反应中观察到了由反应共振态所引起的HF(v=2)前向散射现象(Science 2006),成功解释了李远哲等人首先发现的HF(v=3)前向散射的非反应共振动力学机制(PNAS 2008),实现了在光谱精度对F+HD→HF+D反应共振态的研究(PNAS 2008),并通过理论预测,首次在F+HD→HF+D反应实验上观察到了化学反应分波共振态,即反应共振态的转动结构(Science 2010)。另外,世界上其他动力学实验研究小组还在几个多原子反应体系中发现了反应共振态的可能迹象。这些研究都大大提升了对化学反应共振态的认识,并且得到了一些共振态研究普遍行的重要结论,如反应共振态往往能产生前向散射现象,并在后向散射随碰撞能变化关系上呈现振荡结构,但前向散射和振荡现象现象并非只能由反应共振态所引起;因此,要严格证实反应共振态需要在高精度势能面上开展量子动力学研究,在总反应几率与碰撞能关系上找到振荡现象,并找出对应的共振态波函数。在这一研究课题上,分子反应动力学国家重点实验室研究小组发展了一整套系统的实验和理论相结合的方法来研究和寻找化学反应共振态。同时,随着上述共振态研究的不断深入,一些更深层次的问题出现在他们面前:反应物振动激发对共振态有什么影响?是否能在F+H2/HD这一特殊反应以外的三原子反应中找到共振态?一个更有意义的科学问题是:化学反应共振态是否真的是很稀有的?
  2013年,肖春雷、杨学明等人通过自主研发窄线宽的OPO激光,在利用Stark-induced adiabatic Raman Passage (SARP)技术高效制备振动态激发分子方面取得了重大进展, 对D2分子从(v=0, j=0)到(v=1, j=0)的激发取得了高于90%的效率。这个发展使他们掌握了利用Raman激发在分子束中高效制备振动激发态H2/HD的技术,使在交叉分子束中研究振动激发H2/HD分子的反应散射动力学成为可能。利用该实验技术,他们首先对F+HD(v=1)反应进行高分辨交叉分子束研究,发现一定的前向散射信号,并在后向散射信号随碰撞能的变化曲线上存在振荡现象。为解释实验发现,张东辉等人利用他们提出的势能面多级构造法构造了F+H2体系目前最为精确的势能面。在新的势能面上,理论与实验取得了高度吻合。理论研究发现实验所观察到的振荡现象是由束缚在产物HF(v=4) 绝热振动曲线上的两个全新的共振态所引起的。更有意义的是,研究发现HF(v=4) 绝热振动曲线在反应物端与HD(v=1)态相关联,因而这些共振态只能通过HD的振动激发来产生,而不能通过平动能的增加。这些研究表明对于化学反应,分子振动激发不仅提供能量,也能开启新的反应通道,从而使我们能观察到在基态反应中所无法观察到的共振现象。这项研究同时证明了F+HD振动激发态反应中也有共振现象的存在。通过这一系列的研究,我们理解了F+H2的反应共振来自于反应势垒后存在的量子共振态,是一种很特殊的量子动力学现象。而一个更有普遍意义的科学问题:量子共振态是否存在于更多的反应体系中?他们的可能机理是什么?
  最近,肖春雷、杨学明等人又利用该技术研究了Cl+HD(v=1) →DCl+H反应。前人的研究工作表明这一反应在HD处于基态时是没有任何共振现象的迹象的,这与F+H2反应体系有很大的差异。肖、杨等人利用他们实验室发展的后向散射光谱(BSS)技术发现了后向散射的DCl产物信号随碰撞能的变化曲线上存在着明显的振荡现象,但前向散射信号非常小。为解释这些实验现象,孙志刚、张东辉等人重新构建了该反应高精度的势能面,在此基础上开展了精确的量子动力学计算。理论研究找到了反应共振态波函数,确认了该反应中共振态的存在,从而首次在F+H2体系以外的三原子反应中发现了反应共振态。与以前在F+H2体系中发现的Feshbach共振态不同,新发现的共振态兼有Feshbach共振态和Shape共振态的性质,因而寿命只有20 fs左右,大大短于F+HD反应共振态的寿命(100 fs)。理论分析表明,由于H与DCl的相互作用,过渡态区域D-Cl化学键在第二振动激发态(vDCl=2)的绝热势能曲线上明显被“软化”,使得该绝热势能曲线在反应过渡态区域形成一个明显势阱,这与HD基态反应中过渡态区域明显存在的势垒有很大的差别。由于Cl+HD(v=1) →DCl+H反应主要是沿着该绝热势能曲线进行,共振态对其有重要影响,从而使该化学反应显现出明显的化学反应共振特征。研究还发现共振显著提升该化学反应的反应速率常数并且极大地影响了产物的振转态分布,因此对于认识该化学反应有着重要的意义。
  进一步的理论分析表明,此类化学键“软化”现象是由于反应过渡态附近的非谐性所导致的,而几乎所有的化学反应的过渡态附近都存在非常大的非谐性,因而往往能在振动激发态绝热势能面上能造成一定的势阱,并有可能支持共振态。比如说,在另外的反应通道,Cl+HD(v=1)→HCl+D,理论研究发现了同类反应共振态的存在。因此,这类化学反应共振态并非是稀有的,可能具有相当的普遍性。因此,化学反应共振态在反应物振动激发态反应中很可能是一个普遍现象,这对于化学反应动力学研究具有重要的学术意义。这项研究还能大大帮助我们认识燃烧化学等过程中普遍存在的分子激发振动态反应的动力学真面目。从上述理论与实验紧密相结合的研究中,我们揭示了物理化学家们长期寻找的化学反应共振态的“新机理”——化学键软化,这项研究大大扩展了我们对化学反应共振现象的认识和理解,为今后的化学反应共振态研究指明了一个新的方向。
& &该项研究得到了中科院重大突破择优支持的资助。(文/图 张东辉)
转自http://www./xwzx/kjdt/3197.html
学年,化物所已经发表了3篇science了。1篇甲烷高效转化,1篇MOFs膜,再加上这篇。。。
厉害,赞一个。 祝贺,佩服,牛x 拼的是技术。只要有技术,任何都行的。 膜拜吧,science看着太刺眼了 大牛!佩服! 过来膜拜一下。 赞一个!好厉害。 阁下是化物所的吗。。。 厉害,支持 不明觉厉。。。。 张涛包信和刘中民李灿赵宗保杨学民………………… 大连化物所肿么这么牛呢 曾经在那毕业,在那读博的时候单位基本上一年一篇Science, 最近化物所又牛了,为她的蒸蒸日上发展而感到高兴。 祝福化物所能有更多好的成果。 牛牛牛!!!
var cpro_id = 'u1216994';
欢迎监督和反馈:本帖内容由
提供,小木虫仅提供交流平台,不对该内容负责。欢迎协助我们监督管理,共同维护互联网健康,如果您对该内容有异议,请立即发邮件到
联系通知管理员,也可以通过QQ周知,我们的QQ号为:8835100
我们保证在1个工作日内给予处理和答复,谢谢您的监督。
小木虫,学术科研第一站,为中国学术科研研究提供免费动力
广告投放请联系QQ: &
违规贴举报删除请联系邮箱: 或者 QQ:8835100
Copyright &
eMuch.net, All Rights Reserved. 小木虫 版权所有}

我要回帖

更多关于 论文摘要怎么写 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信